Hex buffer/line driver; 3-state

74HC/HCT365

FEATURES

· Non-inverting outputs

· Output capability: bus driver

• I_{CC} category: MSI

The 74HC/HCT365 are hex non-inverting buffer/line drivers with 3-state outputs. The 3-state outputs (nY) are controlled by the output enable inputs $(\overline{OE}_1, \overline{OE}_2)$.

A HIGH on $\overline{\text{OE}}_n$ causes the outputs to assume a high impedance OFF-state.

The "365" is identical to the "366" but has non-inverting outputs.

GENERAL DESCRIPTION

The 74HC/HCT365 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STIVIDUL	PARAMETER	HC		нст	ONII	
t _{PHL} / t _{PLH}	propagation delay nA to nY	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	9	11	ns	
Cı	input capacitance		3,5	3,5	pF	
C _{PD}	power dissipation capacitance per buffer	notes 1 and 2	40	40	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}{}^2 \times f_i + \sum{(C_L \times V_{CC}{}^2 \times f_o)}$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Hex buffer/line driver; 3-state

74HC/HCT365

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT					
ŌE₁	1.00					
\overline{OE}_2	0.90					
nA	1.00					

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER		T _{amb} (°C)					UNIT	TEST CONDITIONS		
SYMBOL			74HCT							WAVEFORMS	
		+25		−40 to+85		-40 to+125		UNII	V _{CC} (V)	WAVEFORING	
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	propagation delay nA to nY		14	25		31		38	ns	4.5	Fig.6
t _{PZH} / t _{PZL}	3-state output enable time $\overline{\text{OE}}_{\text{n}}$ to nY		18	35		44		53	ns	4.5	Fig.7
t _{PHZ} / t _{PLZ}	3-state output disable time $\overline{\text{OE}}_{\text{n}}$ to nY		23	35		44		53	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.6